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Reaction-diffusion-advection systems have revealed an interesting variety of pattern formation mechanism
during the last years. Inside this field, flow-and-diffusion structures �FDSs� appear as a generalization of the
mechanism of spatial symmetry breaking for different diffusion coefficients and flow rates of activator and
inhibitor. The recent experimental validation of FDSs situates these structures in the focus of the actual
research. We will report here an experimental and numerical analysis of the theoretically predicted robustness
of these flow-and-diffusion structures by using different boundary profiles of illumination used to obtain FDSs.
The results here shown reveal important characteristics related with the coexistence and interaction between
these structures.
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I. INTRODUCTION

The problem of reaction-diffusion systems subjected to
flow influence is one of the most interesting and unexplored
topics in nonlinear science. Initially, research was focused in
to avoid convective effects in stirred reactors �1–4�. But
nowadays research is mainly focused on the combination of
both reaction diffusion and convection to explore different
ways of interaction and pattern formation �5–8�. The mixture
of self-organization and advection is closely related with pro-
cesses of growth and embryo development in living organ-
isms. The idea of a morphogen traveling through the embryo
as a cause of the cell specialization was primary proposed by
Murray �9�. Recent research has demonstrated the existence
of gene expression oscillations which, combined with flow,
determine crucial aspects in the vertebrae formation �10–12�.
The effect of advection in chemical and biological steady
patterns determines their final spatial configuration �13�. In
addition, successful attempts to combine convective and
chemical patterns were performed �14�.

Pattern-forming systems under the influence of chemical
flow has been observed to support self-sustained structures
�34–36�. The interest here resides in the fact that now the
convection is responsible for the stabilization of stationary
chemical gradients �15�. The arising structure is periodic in
the direction of the flow, and the wavelength is determined
by the velocity of the flow. These stationary structures, bap-
tized as FDOs �flow-distributed oscillations� were experi-
mentally obtained by Menzinger and co-workers �6�. This
discovery has not been absent of controversy, due to the
apparent simplicity of the underlying mechanism �16,17�.

Another kind of structure generalizes the mechanism to
systems with different flow rates and diffusion coefficients
�7,18–20�. Flow-and-diffusion structures �FDSs� constitute

the generalization of the Turing mechanism for the more
general reaction-diffusion-advection system. Chemical spe-
cies can flow with general velocities and diffusion rates �21�.
This way, Turing instability �22� can be understood as a limit
case for FDS when advection equals zero.

The conceptual idea is that an advective boundary can
destabilize the medium, creating a spatially periodic steady
pattern. This purely convective instability occurs when the
flow velocity reaches a threshold value. This threshold sepa-
rates the absolute unstable regime and the convective un-
stable regime and it is determined by the chemical conditions
of the particular system �23�. When the system is in the
absolute unstable regime �i.e., flow velocity is below the
threshold� the dynamics of the system is dominated by nor-
mal phase waves of Hopf oscillations. Once the convective
unstable regime is reached, a periodic steady structure arises
in the direction of the flow. This pattern is composed by
spatial periodic modulations in the concentration of activator
and inhibitor, with a wavelength that depends both on chemi-
cal and dynamical aspects. This pattern corresponds to the
FDS instability. Flow-and-diffusion structures are predicted
to be very robust and general, in the sense that the same
instability has been found for many theoretical models
�19,24�.

Experimental evidence of flow-and-diffusion structures
was carried out by using the standard equivalence between a
feeding boundary and a moving mask of illumination
�25,26�. This system has the additional advantage that no
turbulence is present due to the advection, so the flow is
ensured to be directional. In addition, experiments can be
performed in open chemical reactors using gels. This way,
the pattern FDS will be steady with respect to the traveling
boundary, in concordance with the purely convective situa-
tion.

In order to corroborate the theoretical predictions about
the robustness and stability of FDSs, experiments and nu-
merical simulations with different kinds of moving bound-
aries were performed. The goal is to check the structural
stability of the steady FDSs by varying the geometry of the
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boundary. In addition, experiments showing key aspects in
the interaction between two FDSs are reported.

II. EXPERIMENTAL SETUP

Experiments on the photosensitive CDIMA �chlorine di-
oxide, iodine, malonic acid� reaction �27,28� were performed
in a thermostatic continuously fed unstirred one-feeding-
chamber reactor �CFUR� �29,30� at 4±0.5 °C. We observe
two-dimensional patterns in an Agarose gel layer �2% agar-
ose, 0.3-mm thickness, 20-mm diameter�. To ensure the two-
dimensionality of the structure, the thickness of the gel was
kept less than the wavelength exhibited by the system for the
concentrations used here. Two membranes were placed be-
tween the gel and the feeding chamber: a nitrocellulose
membrane �Schleicher & Schnell, pore size 0.45 mm� and an
Anapore membrane impregnated with 0.5% agarose gel
�Whatman, pore size 0.2 �m�.

The reagents were fed into the CSTR by a peristaltic
pump, previously calibrated to ensure the correct control in
the concentrations value. The input concentration of reagents
were �ClO2�=0.15 mM, �I2�=0.45 mM, �H2SO4�=10 mM,
and �malonic acid�=1.2 mM. The residence time of the re-
actants in the reactor was fixed at T=125 s. We add �PVA�
=0.5 mM, as an indicator of the activator concentration. This
way, parts with high activator concentration exhibit garnet
coloration, and parts with inhibitor dominance show light
yellow color. In addition, polyvinyl alcohol �PVA� concen-
tration controls the ratio between diffusion coefficients of
activator and inhibitor. Varying its value, Turing structures
�high concentration� or oscillations �low concentration� can
be obtained with this CDIMA reaction �31,32�. Illumination
was provided using a video projector �Hitachi, CP-X327�
focused onto the gel and connected to a computer. Under this
circumstance, the system itself may exhibit oscillations �see
Fig. 1� for low intensity of illumination and steady state for
large illumination values.

A typical experiment consists of the following: under the
conditions explained before, and starting with homogeneous
and high light intensity, a boundary of illumination begins to
travel through the medium with constant velocity. This way,
the illuminated zone �steady state� decreases its size, to the
expense of the growth of the region in shadow which, in the
stationary case, is in Hopf domain. This situation is an ana-
log to the feeding boundary system. If the observer is mov-
ing with the velocity of the boundary, he will see a constant
flow of reactants through the boundary �33�.

When a steplike boundary separating steady and oscilla-
tory regions propagates throughout the medium with suffi-
ciently large velocity, a pattern of parallel stripes �FDSs�
appears covering the medium behind the boundary. The
minimum velocity for the formation of FDSs is estimated as
Vexp=3.1±0.5 mm/h. Different geometries of the boundary
were considered in order to check their influence on FDS
properties. The different moving boundaries of illumination
were produced by a self-developed program, simply focusing
the video projector onto the medium and projecting whatever
image was produced in the computer. This allows us to easily
explore different possibilities of formation of FDSs.

III. NUMERICAL SIMULATIONS

To validate the experimental results, numerical simula-
tions were performed using the Lengyel-Epstein model for
the CDIMA reaction �31�. In the case of a space and time-
dependent light intensity ��x ,y , t�, the CDIMA rate equa-
tions are described by the two-variable Lengyel-Epstein
reaction-diffusion scheme:

�u

�t
= a − cu −

4uv
1 + u2 − � + �2u,

�v
�t

= ��cu −
uv

1 + u2 + � + Dv�
2v� . �1�

Here u and v are the dimensionless concentrations of the
activator and the inhibitor key species, respectively; a, c, and
� are dimensionless parameters related to other initial con-
centrations and rate constants, and Dv is proportional to the
ratio of diffusion coefficients. The uniform steady state S
= �us ,vs� is given by

S = �a − 5�0

5c
,

a�1 + us
2�

5us
� �2�

that exists for homogeneous illumination in the parameter
regime a�5�0 and c�0, while stable homogeneous oscil-
lations are a solution of Eqs. �1� for a�5�0. Both states can
coexist in a stable way under a suitable stationary illumina-
tion profile.

Numerical results are obtained through the integration of
Eqs. �1� in one and two spatial dimension with a finite dif-
ference scheme. We consider a rectangular CFUR with
lengths Lx and Ly and nonflux boundary conditions are as-

FIG. 1. Phase waves formed in the CDIMA reaction under os-
cillatory condition for low intensity of illumination. The wavelength
of the structure is �=2.9±0.6 mm.
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sumed at x=0,Lx and y=0,Ly. Lengths Lx,y are chosen in
order to allow any FDS to be completely developed before it
reaches the end of the CFUR. For similitude with experi-
ments, our simulations were performed using a moving
boundary of illumination, but the same results can be ob-
tained when an advection term is considered in Eq. �1�.

Hereafter, we fix some parameter values to the following:
a=22, c=1.3, d=1.07, and �=5 in order to reproduce ex-
perimental conditions far from the Turing bifurcation. The
illumination varies between two values: in the low-
illuminated region ��0=2� the uniform solution of the sys-
tem is inside the Hopf domain, and in the high-illuminated
region ��0=4� the solution is the uniform steady state S.
Under these conditions, the threshold velocity for the FDS
formation in the simulation is estimated numerically, vnum
=7.2±0.5 space units/time units �s.u./t.u.�.

IV. RESULTS

The starting point we wanted to verify concerns the sta-
bility of the two-dimensional arrangement of FDSs. In such a
sense, two FDSs with different wavelengths are imposed in
the same system. To do that, we developed a program that
projects two moving boundaries into the medium �the veloc-
ity of one being double that of the other’s�. This way, we
produce two different FDSs coexisting in the same region.
Numerically we have used the external illumination profile
��x ,y , t�=3+H�x−x0−vel�y�t�+��x ,y , t�, where H�z� is a
step function: H�z�=−1�+1� if z�0 ��0�, x0 is the initial
location of the illumination boundary and vel�y� is a piece-
wise constant velocity vel�y�=v1 if y�Ly /2 and vel�y�=v2

for y�Ly /2. ��x ,y , t� is a real Gaussian white noise of in-
tensity �, with zero mean and 	 correlated in space and time.
This low intensity noise in the illumination was introduced to
mimic the intrinsic noise present in all experiments, but it did
not produce an appreciable change in the final shape and
behavior of the patterns�34�.

The experimental result is shown in Fig. 2�a� while the
numerical simulation is plotted in Fig. 2�b�. The coexistence

of two stable FDSs in the low illuminated region is appreci-
ated. The boundary between both FDSs at y=Ly /2 is deter-
mined by the geometry of the mask of illumination and it
remains stable during the time evolution, even in the pres-
ence of a source of noise and diffusive transport. These ex-
periments show that FDSs can coexist with different wave-
lengths, even when the values for the wavelengths are
extremely different.

In this way, we have also constructed a traveling mask
that induces in experiments a pattern whose wavelength is
continuously varied. Thus we projected a boundary onto the
system whose velocity depends linearly with the value of Y.
Here the CFUR is forced by a profile of illumination with
velocity vel�y�=vely /Ly. The analogy with the purely advec-
tive system is a feeding boundary with different flow veloci-
ties in each point.

The results of the experiment and the corresponding nu-
merical simulation are shown in Fig. 3. From Fourier analy-
sis of the numerically obtained patterns we conclude that a
FDS with a continuum value of wavelengths is maintained.
The wavelength, understood as the periodicity in the X di-
rection, goes from small values on the bottom to very large
values on the top. The lower part of both figures is not
clearly defined, because we are in the range of velocities
below the critical value for FDS formation.

The next goal is to check the robustness of the pattern for
geometrical changes. The study of the behavior of the FDS
for different shapes of the boundaries will report an intuitive
idea of their underlying properties. In addition, we can prove
this way the interesting nature of this kind of pattern, com-
pletely different from the purely Hopf oscillations, which
would correspond to these parameter values without advec-
tion.

FIG. 2. Snapshot of the experiment �a� and numerical simulation
�b� corresponding to the case of double velocity in the moving
boundary. Velocities used were �a� V1=4 mm/h and V2=8 mm/h,
�b� V1=10 s .u . / t .u. and V2=12 s .u . / t .u. Size of �a�=10

10 mm. The mask is moving from left to right.

FIG. 3. Snapshots of FDSs obtained from a mask of illumination
with a y-dependent velocity of propagation. �a� Correspond to ex-
perimental results, and �b� is a numerical simulation with the same
kind of moving mask. It can be observed that the coexistence of a
continuum value in the wavelength is also possible. For vel below
the FDS threshold convective propagating structures are developed.
The mask is moving from left to right. Velocity on the top: �a� V
=8 mm/h, �b� V=12 s .u . / t .u.
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To do that, we perform a mask with a sinusoidal profile,
as an illustrative example. To explore this property numeri-
cally, we have also considered space-periodic profiles of il-
lumination ��x ,y , t�=3+H�x−xd�y�−velt�+��x ,y , t�, where
xd=x0+	 sin�ky�. Figure 4 strongly suggests that the proper-
ties of the external illumination determines the shape of
FDSs which follows adiabatically the mask of illumination.
Both, experimental and numerical system behaves exactly in
the same way: each stripe appears with the same shape as the
one used in the mask. The wavelength is not affected and the
pattern remains with this imposed geometry far from the
boundary of light. Again, the flux influence stabilizes the
configuration of the FDS, maintaining a pattern that mimics
the shape of the feeding boundary.

Finally, another important issue is to study the collision
between different FDSs, in order to check the interaction of
two of these waves. We use a mask composed of two bound-
aries moving in a perpendicular arrangement, in the form of
a rectangle of high light intensity traveling through the me-
dium. The analogous case in the purely convective system is
composed of two feeding boundaries situated forming an
angle of � /2. In the simplest case the two boundaries are
moving with the same velocity, so both interacting FDSs
have the same wavelength, although similar results are ob-
tained when velocities are not equal.

Figure 5 shows these results. Vertical and horizontal
waves collide in the diagonal marked by the displacement of
both boundaries. As time goes on, the interaction results in
annihilation of the pattern after the collision. The final struc-
ture is composed by two sets of perpendicular FDSs linked at

the collision point. In spite of the apparent simplicity of the
idea �two perpendicular boundaries with the same advection
velocities�, the interaction of FDSs reveals a quite compli-
cated mechanism, that needs a more detailed analysis.

V. CONCLUSION

In this paper, we report an analysis of the robustness and
structural stability of FDSs in front of changes in the shape
of the boundary of illumination. For all cases reported here,
the geometry of the FDSs is closely determined by the mov-
ing boundary as well as the wavelength given by the bound-
ary velocity. Also we investigate the coexistence of different
wavelengths and the interaction between FDSs. After visual-
izing all the results, one can conclude that these mechanisms
of formation of steady patterns is extremely robust. This
strong stability and robustness is, by itself, one of the key
arguments for these structures to be a serious candidate to
explain the underlying mechanism in some biological seg-
mentation processes.
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